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Abstract

An acyclic (resp. star) coloring of a graph is a proper vertex coloring such that the subgraph induced
by every pair of colors is a disjoint collection of trees (resp. stars). In this paper, we consider the acyclic
and star chromatic numbers of graphs that are decomposable with respect to the join operation, which
builds a new graph from a collection of two or more disjoint graphs by adding all possible edges between
them. In particular, we present a recursive formula for the acyclic chromatic number of joins of graphs
and show that a similar formula holds for the star chromatic number.

The cographs have the unique property that they are recursively decomposable with respect to the
join and disjoint union operations. We show that our results imply a linear time algorithm for finding
optimal acyclic and star colorings of cographs.

1 Introduction

A proper vertex coloring (or coloring) of a graph G = (V,E) is an assignment of colors to the vertices such
that adjacent vertices receive distinct colors. The chromatic number of G, denoted χ(G), is the minimum
number of colors required in any coloring of G. An acyclic coloring of a graph is a coloring such that the
subgraph induced by the union of any two colors is a disjoint collection of trees. A star coloring of a graph is
a coloring such that the subgraph induced by the union of any two colors is a disjoint collection of stars. The
acyclic and star chromatic numbers of G are defined analogously to the chromatic number and are denoted
by χa(G) and χs(G), respectively. Since a disjoint collection of stars constitutes a forest, every star coloring
of a graph G is also an acyclic coloring and χa(G) ≤ χs(G). We will find it useful to consider the alternative
definitions that result from the following observation.

Observation 1. The following hold for any graph G :

(i) A coloring of G is an acyclic coloring if and only if every cycle in G uses at least three colors.
(ii) A coloring of G is a star coloring if and only if every path on four vertices in G uses at least three

colors.

The notions of acyclic and star coloring were introduced in 1973 (the latter by a different name) by
Grünbaum [9], who studied them in the context of planar graphs.

Additionally, a number of results exist for acyclic colorings of graphs formed by certain graph operations.
Results have been obtained for grids (which are the Cartesian products of paths) [5], as well as Cartesian
products of trees [13], cycles [11], and complete graphs [12]. In Section 3, we describe the acyclic and star
chromatic number of graphs formed by the join operation [10].

In Section 4, we turn our attention to algorithmic properties of acyclic and star colorings.
The study of these problems from an algorithmic point of view is motivated in part by their applications

in the field of combinatorial scientific computing, where they model the optimal evaluation of sparse Hessian
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matrices. The general idea of the use of coloring in computing derivative matrices is the identification of
entities which are essentially independent and thus may be computed concurrently; see [6] for a survey.

In fact, both acyclic and star colorings were discovered independently by the scientific computing com-
munity. The problem of finding an acyclic coloring that uses a minimum number of colors was shown to
be NP-hard in [2], where it is called the “cyclic” coloring problem. It has also been shown that finding an
optimal star coloring is NP-hard [3]. Both results hold even for bipartite graphs. Inapproximability results
for both problems are given in [8].

Recently (also in the context of computing Hessian matrices), it was shown in [7] that every coloring of
a chordal graph is also an acyclic coloring. Since recognizing and optimally coloring chordal graphs can be
done in linear time, this result immediately implies a linear time algorithm for acyclic coloring problem on
chordal graphs. A generalization of this result and other related results can be found in [14]. In particular,
it is shown that cographs can be characterized in the following way.

Theorem 1.1 ([1, 14]). Let G be a graph. Then the following are equivalent:

(i) G is a cograph;
(ii) G has no induced P4;

(iii) every acyclic coloring of G is also star coloring.

Thus, the cographs are interesting for reasons other than the nice decomposition properties that they
exhibit. This well-studied class has many other characterizations; see [1, Theorem 11.3.3] for a partial list.
We demonstrate that the results given in Section 3 can be used to develop a linear time algorithm for finding
an optimal acyclic coloring of a cograph. Additionally, we show that the coloring obtained is also an optimal
star coloring, as suggested by Theorem 1.1.

2 Preliminaries

In this section, we introduce some definitions and notation, as well as some prove some elementary results
that will be useful in Sections 3 and 4. Throughout this paper, I will denote a finite index set. The
disjoint union of a collection {Gi = (Vi, Ei)}i∈I of pairwise disjoint graphs is the graph G = (V,E), where
V =

⋃
i∈I Vi and E =

⋃
i∈I Ei.

Proposition 2.1. The following hold for any graph G = G1

⋃
G2 :

(i) χ(G) = max{χ(G1), χ(G2)};
(ii) χa(G) = max{χa(G1), χa(G2)};

(iii) χs(G) = max{χs(G1), χs(G2)}.

Proof. The proof follows from the simple observation that the graph with the lower chromatic number can
be colored with some subset of the colors used by the other graph.

The join of a collection {Gi = (Vi, Ei)}i∈I of pairwise disjoint graphs is the graph G = (V,E), where
V =

⋃
i∈I Vi and E = {ab | ab ∈ Ei, i ∈ I} ∪ {ab | a ∈ Vi, b ∈ Vj , i, j ∈ I, i 6= j}.

Proposition 2.2. The following hold for any graph G = G1

⊕
G2 :

(i) χ(G) = χ(G1) + χ(G2);
(ii) χa(G) ≥ χa(G1) + χa(G2);

(iii) χs(G) ≥ χs(G1) + χs(G2).

Proof. We first observe that G1 and G2 are induced subgraphs of G, and thus they must both be colored
appropriately for any coloring of G. The proof then follows from the fact that every vertex in V1 is adjacent to
every vertex in V2, which means that no color can occur on a vertex in V1 and a vertex in V2 simultaneously.
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We will write G = V1

⊕
V2 when G = (V,E) is the graph that results from taking the join of two graphs

G1 = (V1, E1) and G2 = (V2, E2) such that V1 ∩ V2 = ∅. We denote by |φ| the number of colors used by a
coloring φ : V → {1, . . . , |φ|} of a graph G = (V,E). Let φ be a coloring of a graph G such that G is either
the disjoint union or join of a collection {Gi}i∈I of graphs. We denote by φi the coloring of Gi obtained by
restricting φ to Vi, where |φi| is the number of colors used by φi. The following proposition holds even when
φ is an acyclic coloring or a star coloring.

Proposition 2.3. Let φ be a coloring of a graph G = G1

⊕
G2. Then φ1 and φ2 are disjoint, and |φ| =

|φ1|+ |φ2|. Moreover, the same is true when φ is an acyclic or star coloring of G.

Proof. This follows immediately from Proposition 2.2.

3 Main Results

For ease of exposition, we will focus on the case where G is the join of exactly two graphs. We will then
demonstrate that these results generalize to joins of arbitrarily large collections of graphs.

G1 G2

a1

b1

a2

b2

Figure 1: Illustration of the proof of Theorem 3.1. If |φ1| < |V1| and |φ2| < |V2|, then there exist vertices
a1, b1 ∈ V1 and a2, b2 ∈ V2 that form a bichromatic C4.

We are now ready to present one of the main theorems, which relates χa(G) to χa(G1) and χa(G2).

Theorem 3.1. Let G1 = (V1, E1) and G2 = (V2, E2) be graphs. Then

χa(G1

⊕
G2) = χa(G1) + χa(G2) + min {|V1| − χa(G1), |V2| − χa(G2)} .

Proof. (≤) : We prove this direction by presenting an algorithm that, given optimal acyclic colorings of G1

and G2, produces an acyclic coloring φ of G that uses the desired number of colors. Let φ1 and φ2 be
arbitrary optimal acyclic colorings of G1 and G2, respectively, where, as follows from Proposition 2.3, φ1

and φ2 are disjoint. Assume without loss of generality that |V1| − χa(G1) ≤ |V2| − χa(G2). We construct φ
as follows.

• Color those vertices in V2 ⊆ V the same as they are colored by φ2.

• Color those vertices in V1 ⊆ V with a new coloring φ′1 such that each v ∈ V1 receives a unique color
and φ′1 is disjoint from φ1 and φ2.

To see that this process results in |φ| having the desired size, observe that the difference between |φ1| and |φ′1|
is exactly |V1| − χa(G1), which was assumed without loss of generality to be no greater than |V2| − χa(G2).
Thus we have demonstrated a method for constructing the desired coloring φ, which completes this direction
of the proof.
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(≥) : Let φ be an optimal acyclic coloring of G, and assume for the sake of contradiction that

χa(G) < χa(G1) + χa(G2) + min {|V1| − χa(G1), |V2| − χa(G2)} .

It follows that
χa(G) < χa(G1) + χa(G2) + |V1| − χa(G1)

and
χa(G) < χa(G1) + χa(G2) + |V2| − χa(G2),

which can be combined with Proposition 2.3, along with the fact that φ is an acyclic coloring of G, to obtain

|φ1|+ |φ2| < χa(G2) + |V1| (1)

and
|φ1|+ |φ2| < χa(G1) + |V2|. (2)

We will now show that this implies that φ uses few enough colors that we must have |φ1| < |V1| and
|φ2| < |V2|, which will lead to a contradiction. Note that Proposition 2.3 also implies that χa(G1) ≤ |φ1| and
χa(G2) ≤ |φ2|, and note also that all quantities in (1) and (2) are nonnegative. Thus we may subtract |φ2|
from the left-hand side and χa(G2) from the right-hand side of (1), and we may likewise subtract |φ1| from
the left-hand side and χa(G1) from the right-hand side of (2). In doing so, we show that φ1 must use fewer
than |V1| colors and φ2 must use fewer than |V2| colors, as desired. Consequently, there must exist vertices
a1, b1 ∈ V1 and a2, b2 ∈ V2 such that φ1(a1) = φ1(b1) and φ2(a2) = φ2(b2). It follows that the vertices in
{a1, a2, b1, b2} form a bichromatic C4 in G (depicted in Figure 1) which contradicts the fact that φ is an
acyclic coloring of G, and thus the proof is complete.

We now develop an analogous theorem for star coloring.

Theorem 3.2. Let G1 = (V1, E1) and G2 = (V2, E2) be graphs. Then

χs(G1

⊕
G2) = χs(G1) + χs(G2) + min {|V1| − χs(G1), |V2| − χs(G2)} .

Proof. The proof follows from the observation that any bichromatic cycle appearing in the proof of Theo-
rem 3.1 implies a bichromatic P4.

Corollary 3.3. Let {Gi = (Vi, Ei)}i∈I be a finite collection of graphs. Then

(i) χa

(⊕
i∈I

Gi

)
=
∑
i∈I

χa(Gi) + min
j∈I

 ∑
i∈I,i6=j

(|Vi| − χa(Gi))

 ;

(ii) χs

(⊕
i∈I

Gi

)
=
∑
i∈I

χs(Gi) + min
j∈I

 ∑
i∈I,i6=j

(|Vi| − χs(Gi))

 .

Proof. Observing that the join operation is commutative and associative, we obtain the result by using
induction on |I|.

4 Cographs

In this section, we present a linear time algorithm for finding optimal acyclic and star colorings of cographs.
Our algorithm works on the cotree (defined below) in a way that is typical for algorithms on cographs.

We select the following definition, which is one of many equivalent definitions of the class of cographs, as
it will be most useful for our purposes.

Definition 1 (cograph). A graph G = (V,E) is a cograph if and only if one of the following is true:
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(i) |V | = 1;

(ii) there exists a collection {Gi}i∈I of cographs such that G =
⋃
i∈I

Gi;

(iii) there exists a collection {Gi}i∈I of cographs such that G =
⊕
i∈I

Gi.

Cographs can be recognized in linear time [4], where most recognition algorithms also produce a special
decomposition structure when the input graph G is a cograph. We now introduce this structure, which is
often used in algorithms designed to work on cographs. We associate with a cograph G a tree TG called
a cotree, whose leaves correspond to the vertices of G and whose internal nodes are labeled either 0 or 1,
corresponding to the disjoint union and join operations, respectively, in the following way. Let t ∈ T be
an internal node with children {ti}i∈I . If t is a 0-node, then t corresponds to the disjoint union of {ti}i∈I ,
Otherwise, t corresponds to the join of {ti}i∈I . Every node in TG has as descendants some subset A ⊆ V of
the vertices of G. Therefore, it is natural to identify each node in the tree with the graph induced in G by
this set of vertices, which we denote by tA. In this way, the cotree describes a decomposition of G such that
the root of TG corresponds to G itself. It follows from the definition of the cotree that two vertices in G are
adjacent if and only if their lowest common ancestor in TG is a 1-node.

The canonical cotree TG is unique and has the property that every path from a leaf to the root alternates
between 0-nodes and 1-nodes. G can also be represented by one or more cotrees which do not necessarily
possess this property, but whose internal nodes all have exactly two children. Such binary cotrees can be
easier to work with algorithmically, as is the case in the proof of the following theorem.

Theorem 4.1. An optimal acyclic coloring of a cograph can be found in linear time. Furthermore, the
obtained coloring is also a star coloring.

Proof. We assume that a cograph G has been given along with a cotree TG, which can be assumed without
loss of generality to be binary. We initialize χa(t) = 1 for every leaf t ∈ TG and initialize the coloring that
will be constructed by assigning each vertex the same color. The algorithm proceeds by traversing the cotree
starting with the leaves, such that no node is visited before both of its children have been visited. When we
visit a node t ∈ TG with children t1 and t2, we do the following.

• If t is a 0-node, we use the process described in the proof of Proposition 2.1 to obtain a coloring that
uses χa(t) = max{χa(t1), χa(t2)} colors.

• If t is a 1-node, we use the process described in the proof of Theorem 3.1 to obtain a coloring that uses
χa(t) = χa(t1) + χa(t2) + min{|Vt1 | − χa(t1), |Vt2 | − χa(t2)} colors.

Clearly, any coloring produced by the algorithm will be acyclic, as we have already shown that the coloring
method applied at each 1-node and 0-node in TG produces an acyclic coloring. Furthermore, it follows from
Theorem 3.1 and Proposition 2.1 that the coloring produced at each tA ∈ T is an optimal coloring for the
subgraph induced by A ⊆ V in G, which includes the root of TG. As the root corresponds to G, and our
algorithm clearly runs in linear time, we have demonstrated the desired algorithm for acyclic coloring. That
the coloring obtained is also an optimal star coloring follows from Theorem 1.1.

Example. We demonstrate the behavior of the algorithm on the example shown in Figure 2. In particular,
while we could use any cotree for G, we will use the binary cotree shown in Figure 2(c). We begin with

χa(t{a}) = χa(t{b}) = · · · = χa(t{h}) = 1.

Now moving up the tree, we get χa(t{a,b}) = χa(t{c,d}) = max{1, 1} = 1 and χa(t{e,f}) = χa(t{g,h}) =
χa(t{e,f,g,h}) = 2. Next, we compute χa(t{a,b,c,d}) = 1 + 1 + max{1− 1, 1− 1} = 2.

Finally, the most interesting case is the root of TG, which corresponds to G itself. In particular, we have
G = G1

⊕
G2, where G1 = t{a,b,c,d} and G2 = t{e,f,g,h}. Thus χa(G1) = 3, χa(G2) = 2, and |V1| = |V2| = 4.

Therefore, χa(G) = χa(t{a,b,c,d,e,f,g,h}) = 3 + 2 + min{4− 3, 4− 2} = 3 + 2 + 1 = 6.
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Figure 2: (a) A cograph G; (b) its canonical cotree TG; (c) a binary cotree T. The graph is shown along with
an optimal acyclic coloring, which is (necessarily) also an optimal star coloring.

5 Concluding Remarks

We have shown that the acyclic and star chromatic numbers of graphs formed by the join operation can
be expressed recursively in terms of the graphs that they compose. We have also demonstrated some
algorithmic properties of these problems with respect to the join operation. Our results, along with the
recursive properties of the cographs, yield a linear time algorithm for this class.

We hope that the results presented here will lead to efficient algorithms for the efficient computation of
Hessian matrices that exhibit special structure. We also hope that these results can be generalized. A first
approach would be to attempt to apply other decompositions whose algorithmic properties are well known,
as well as the classes that have special structure with respect to them. Possibilities include modular, split,
tree, and 2-join decompositions.
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